A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development.
نویسندگان
چکیده
Notch1 is known to play a critical role in regulating fates in numerous cell types, including those of the hematopoietic lineage. Multiple defects exhibited by Notch1-deficient embryos confound the determination of Notch1 function in early hematopoietic development in vivo. To overcome this limitation, we examined the developmental potential of Notch1(-/-) embryonic stem (ES) cells by in vitro differentiation and by in vivo chimera analysis. Notch1 was found to affect primitive erythropoiesis differentially during ES cell differentiation and in vivo, and this result reflected an important difference in the regulation of Notch1 expression during ES cell differentiation relative to the developing mouse embryo. Notch1 was dispensable for the onset of definitive hematopoiesis both in vitro and in vivo in that Notch1(-/-) definitive progenitors could be detected in differentiating ES cells as well as in the yolk sac and early fetal liver of chimeric mice. Despite the fact that Notch1(-/-) cells can give rise to multiple types of definitive progenitors in early development, Notch1(-/-) cells failed to contribute to long-term definitive hematopoiesis past the early fetal liver stage in the context of a wild-type environment in chimeric mice. Thus, Notch1 is required, in a cell-autonomous manner, for the establishment of long-term, definitive hematopoietic stem cells (HSCs).
منابع مشابه
RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells.
Definitive hematopoiesis in the mouse embryo originates from the aortic floor in the P-Sp/AGM region in close association with endothelial cells. An important role for Notch1 in the control of hematopoietic ontogeny has been recently established, although its mechanism of action is poorly understood. Here, we show detailed analysis of Notch family gene expression in the aorta endothelium betwee...
متن کاملAML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis.
The Notch1-RBP-Jkappa and the transcription factor Runx1 pathways have been independently shown to be indispensable for the establishment of definitive hematopoiesis. Importantly, expression of Runx1 is down-regulated in the para-aortic splanchnopleural (P-Sp) region of Notch1- and Rbpsuh-null mice. Here we demonstrate that Notch1 up-regulates Runx1 expression and that the defective hematopoiet...
متن کاملNotch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium.
Hematopoietic and vascular development share many common features, including cell surface markers and sites of origin. Recent lineage-tracing studies have established that definitive hematopoietic stem and progenitor cells arise from vascular endothelial-cadherin(+) hemogenic endothelial cells of the aorta-gonad-mesonephros region, but the genetic programs underlying the specification of hemoge...
متن کاملNon-cell autonomous requirement for the bloodless gene in primitive hematopoiesis of zebrafish.
Vertebrate hematopoiesis occurs in two distinct phases, primitive (embryonic) and definitive (adult). Genes that are required specifically for the definitive program, or for both phases of hematopoiesis, have been described. However, a specific regulator of primitive hematopoiesis has yet to be reported. The zebrafish bloodless (bls) mutation causes absence of embryonic erythrocytes in a domina...
متن کاملPlatelet derived growth factor receptor alpha is essential for establishing a microenvironment that supports definitive erythropoiesis.
The hematopoietic system undergoes a qualitative change during the embryogenesis of most vertebrates. It is designated as the shift of primitive to definitive hematopoiesis and suitable microenvironment must be established to support this shift. While studying the role of platelet derived growth factor receptor alpha (PDGFR alpha) in embryonic hematopoiesis, we found that it was expressed in a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 104 10 شماره
صفحات -
تاریخ انتشار 2004